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Abstract: - In this paper, we obtain analytical solutions of a system of time-fractional coupled Burger equation 
of one-dimensional form via the application of Fractional Complex Transform (FCT) coupled with a modified 
differential transform method (MDTM) in comparison with Adomian Decomposition Method (ADM). The 
associated fractional derivatives are defined in terms of Jumarie’s sense.  Illustrative cases are considered in 
clarifying the effectiveness of the proposed technique. The method requires minimal knowledge of fractional 
calculus. Neither linearization nor discretization is involved. The results are also presented graphically for 
proper illustration and efficiency is ascertained. Hence, the recommendation of the method for linear and 
nonlinear space-fractional models. 
 
Key-Words:  Fractional calculus, Adomian decomposition method, fractional complex transform, MDTM, 
coupled Burger equation. 
 
1 Introduction 
 
Burger’s equation appears to be a basic partial 
differential equation with copious applications in 
applied mathematics viz: modelling, gas dynamics, 
traffic flow, nonlinear acoustics and so on [1-3]. As 
regards stochastic dynamics, the applications of 
stochastic Burgers equation surface in mathematical 
finance, quantum physics, and financial physics [4-
7]. The one-dimensional integer form of the coupled 
nonlinear Burger equation follows: 
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subject to the following conditions (2) and (3) (that 
is, initial and Dirichlet boundary conditions 
respectively): 
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for ,x∈Ω  0t >  where [ ]{ }: ,x x c dΩ = ∈  

signifies a domain of computational interval, the 
constants 1 2 1 2,  ,  ,  and ξ ξ µ µ  are real, while 

 and γ η  are arbitrary constants subject to the 
system’s constraints. 
A lot of analytical, semi-analytical, and numerical 
methods of solution appear in literature for solving 
PDEs such as the one-dimensional Burger, coupled 
Burger equations (1) and the likes [8-27].  
Sequel to fractional calculus, this work considers a 
non-integer ordered form of (1) as an extension 
which is regarded as time-fractional order coupled 
nonlinear Burger equation of the form: 
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Recent work on fractional Burgers’ equation include 
that of Momani [28] via the application of a semi-
analytical approach: Adomian Decomposition 
Method (ADM). Fractional Burger model equation 
may be expressed in terms of time, space, or time-
space order. For instance, the space-fractional 
Burger model is used for proper description of the 
physical processes of unidirectional propagation of 
weakly nonlinear acoustic waves via a gas-filled 
pipe. The view is the same for other systems like the 
shallow-water waves and so on [29]. 
 
 
2 Fractional Derivative in the Sense of 
Jumarie 
 
It is noted here that Jumarie’s Fractional Derivative 
(JFD) is a modified form of the Riemann-Liouville 
derivatives [30]. Hence, the definition of JFD and its 
basic properties as follows: 
Suppose ( )zσ  is a continuous real valued function 
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where ( )Γ ⋅  represents a gamma function. The main 
features of JFD are as follows [31]: 
(i) 0,  0zD cα α= > , for a constant c  

(ii) ( )( ) ( ) ,  0z zD c z cD zα ασ σ α= > , 

(iii) 
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(v) ( )( )( ) 1
z z gD z g D D zα ασ σ= ⋅ , 

The features (i)-(v) are fractional derivatives of: 
constant function, constant multiple function, power 
function, product function, and function of function 
respectively. Though, (v) can be associated to 
Jumarie’s chain rule in terms of fractional 
derivative. 
 
 
3 The Reduced Differential 
Transform [32-35] 
  
Suppose ( ),m x t  is an analytic and continuously 
differentiable function, defined on D  (a given 
domain), then the differential transformation form 
of ( ),m x t  is defined and expressed as: 
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where ( )kM x and ( ),m x t  are referred to as the 
transformed and the original functions respectively. 
Thus, the differential inverse transform (DIT) of 

( )kM x  is defined and denoted as: 
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3.1 The fundamentals properties of the DTM 
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3.2 The Fractional complex transform [29, 
30] 
 
Suppose we consider a general fractional differential 
equation of the form: 
 
( ) ( ), , , , 0,  , , ,t x y zh D D D D t x y zα β λ γυ υ υ υ υ υ υ= = ,

                   (8) 
and define the Fractional Complex Transform (FCT) 
as follows: 
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where a is an unknown constant, then from (iii), we 
have: 
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3.3 Adomian decomposition method 
  
The Adomian decomposition method is one of the 
numerical methods which can be applied to both 
linear and non-linear differential problems (i.e. both 
ordinary differential equations (ODE) and partial 
differential equation (PDE)) [36, 37]. It is in the 
form of algorithms. It permits researchers to solve 
initial value problems (IVP) and boundary value 
problems (BVP) without assuming the initial term, 
or some basis function. 
The ADM represents the nonlinear equation in this 
form: 

    Lu Ru Nu g+ + =                (12) 
where L  represents a linear operator, R  represents 
a remainder and N  represents a non-linear 
operator. 

Generally, we choose ( )
n

n

dL
dx

= ⋅ , to be the nth-

order differential operator and thus its inverse 1L−  
follows as the nth-order integration operator. 
 
Therefore, applying the inverse linear operator 1L−

to both sides of (12), we have: 
1 1 1 1L Lu L Ru L Nu L g− − − −+ + =              (13) 

where; 
1L Lu u φ− = −                (14) 

and φ  signifies the initial value. 
Therefore, (13) becomes; 

1 1 1u L Ru L Nu L gφ − − −− + + =               (15) 
or 

1 1 1[ ]u L g L Ru L Nuφ− − −= + − +             (16) 
or 

1 1( ) [ ]u u L Ru L Nuϕ − −= − +                   (17) 
 

where 
1( )u L gϕ φ−= +  ,                                 (18)

      
signifies the initial values of the nonlinear equation. 
The ADM expresses the solution ( )y t  in series 
form; 
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Also, the non-linear operator can be expressed into a 
series of Adomain polynomials; 
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The Adomain polynomials nA  are dependent on the 
values of 0 1 2, , ,..., nu u u u  and are obtained for the 
nonlinearity ( )Nu f u=  by the formula: 
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4  Examples/Applications 
 
Here, the concerned methods of solution are used 
for a nonlinear time-fractional coupled Burger 
equation as follows. 
Suppose we take: 

1 2 1 21,  2,  1,  2ξ ξ µ µ= − = − = − = − , & 1γ η= = , 
then we consider (4) of the form: 
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subject to: 

( ) ( ) ( ),0 ,0 sinu x v x x= = .              (23) 
 
Case I Method I (FCT-RDTM) 
Solution Steps: 

By FCT, 
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subject to: 
( ) ( ),0 sin ,0u x x v x= = . 

By the RDTM in section 3, we have the recurrence 
relation from (24) as: 
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Hence, using the initial condition: 
( ) ( ),0 sin ,0u x x v x= =  we obtain: 
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In general, we have: 

 ( ) ( )3 3

1 sin
, 0

!

p x
U V  p

p
−

= = ∈ ∪ .                   (27) 

∴   

( )
( ) 2

0 3 4

sinsin sin
2!,

sin sin
3! 4!

h
h

h

xx x T T
u x T U T

x xT T

α
∞

=

 − + 
= =  

 − + + 
 

∑


 

        
( ) ( )

( ) ( )
0 0

1
sin sin

! !
sin exp .

n nn

n n

T T
x x

n n
                            x T

∞ ∞

= =

− −
= =

= −

∑ ∑         (28) 

Similarly, 
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Hence, the exact solution of (4.1) is: 

( ) ( ) ( )

( ) ( ) ( )

, sin exp ,
1

, sin exp .
1

tu x t x

tv x t x

α

α

α

α

  
= −   Γ +  


  = −   Γ + 

            (30) 

Note: when 1α =  in (30), we have 
( ) ( ) ( ) ( ), sin exp ,u x t x t v x t= − =  yielding the exact 

solution of the classical coupled nonlinear Burgers 
equation in line with the result in [1], [8], and [25]. 
 
Case 1 Method II (FCT-ADM) 
 
Here, we consider the integer order form in (24) via 
the decomposition method as follows. Suppose u  
and v  satisfy (24), then in an operator form, (24) is 
expressed as: 
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For further steps, we operate (33) on (31) yielding: 
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when u  and v  are decomposed as:  
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then (34) becomes: 
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where the nonlinear terms are expressed in infinite 
series (Adomian polynomials) as: 
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For computational sake, we express few terms of 
(37) as: 
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Hence, the associated relation is given as: 
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implies that: 
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Similarly, 
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As a result,  
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The solutions at different values of t  and α  are 
presented in Fig. 1 and Fig. 2. 
 

 
       Fig. 1: Graphical solution for at 1,  ( 1) tα = =  
 

 
Fig. 2:  Graphical solution for 0.75α = , ( )1t =  

 
 
5 Conclusion 
 
We obtained exact solutions of a system type of 
one-dimensional time-fractional nonlinear coupled 
Burger equations via the application of FCT coupled 
with reduced differential transform method (FCT-
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RDTM) and FCT coupled with ADM (FCT-ADM). 
Both methods: FCT-RDTM and FCT-ADM yielded 
same results in series forms; the former involved 
less iterations. The FCT is indeed simple but 
effective and accurate for the solutions of fractional 
differential equations. The associated derivatives 
were defined in terms of Jumarie’s sense. It is noted 
that basic knowledge of advanced calculus is more 
required than that of fractional calculus while 
obtaining exact solutions of fractional equations 
with high level of accuracy not being compromised. 
This can therefore be extended to space-fractional 
derivatives of higher orders both in linear and 
nonlinear forms. 

 
Acknowledgement 

 
The authors are grateful to Covenant University for 
enabling working environment and financial 
support.  Sincere thanks to the anonymous referee(s) 
for their productive comments.  
 

Conflict of Interests 
The authors declare that they have no conflict of 

interest regarding the publication of this paper. 
 
 
References 
[1] Oderinua, R.A., The Reduced Differential 

Transform Method for the Exact Solutions of 
Advection, Burgers and Coupled Burgers 
Equations, Theory and Applications of 
Mathematics & Computer Science, 2 (1), 2012, 
10–14. 

[2] Burger, J.M., A Mathematical Model 
Illustrating the Theory of Turbulence, Academic 
Press, New York, 1948. 

[3] Abazari, R., and Borhanifar, A., Numerical 
study of the solution of the Burgers and coupled 
Burgers equations by a differential 
transformation method, Computers and 
Mathematics with Applications, 59, 2010, 2711-
2722.  

[4] Alabert, A. and Gyongy, I., On numerical 
approximation of stochastic Burgers' equation, 
In book. From stochastic calculus to 
mathematical finance, 2006, 1-15. Springer, 
Berlin. 

[5] Edeki, S. O., Owoloko, E. A., Ugbebor, O. O., 
The Modified Black-Scholes Model via 
Constant Elasticity of Variance for Stock 
Options Valuation, AIP Conference 
proceedings, 1705, 020041 (2016); doi: 
10.1063/1.4940289 

[6] Bertini, L.  Cancrini N. and Jona-Lasinio. G. 
The stochastic Burgers equation, Comm. Math. 
Phys., 165 (2), 1994, 211-232. 

[7] Edeki, S.O.,  Ugbebor, O.O.,  Owoloko, E.A., 
He's polynomials for analytical solutions of the 
Black-Scholes pricing model for stock option 
valuation, Lecture Notes in Engineering and 
Computer Science, 2224, 2016, 632-634. 

[8] Srivastava, V.K.; Singh, S.; and Awasthi, M.K. 
Numerical solution of coupled Burgers’ 
equation by an implicit finite difference scheme, 
AIP Advances 3, 082131, 2013. 

[9] Mittal, R. C.; and Arora, G, Numerical solution 
of the coupled viscous Burgers’ equation, 
Commun. Nonlinear Sci. Numer. Simulat. 16, 
1304. 2011. 

[10] Edeki, S. O. Ugbebor, O.O. and González-
Gaxiola, O.,  Analytical Solutions of the 
Ivancevic Option Pricing Model with a nonzero 
Adaptive Market Potential, International 
Journal of Pure and Applied Mathematics, 115 
(1), 2017, 187-198. 

[11] Deghan, M., Asgar, H., and Mohammad, S.,  
The solution of coupled Burgers’ equations 
using Adomian-Pade technique, Appl. Math. 
Comput. 189, 1034, 2007. 

[12] Soliman, A.A., The modified extended tanh-
function method for solving Burgers-type 
equations, Physica A 361, 394, 2006. 

[13] Edeki, S.O.; Akinlabi, G.O. and Adeosun, S.A. 
Approximate-analytical Solutions of the 
Generalized Newell-Whitehead-Segel Model 
by He’s Polynomials Method, Proceedings of 
the World Congress on Engineering, London, 
UK, 2017.  

[14] González-Gaxiola, O., Edeki, S.O., Ugbebor, 
O.O. and De Chávez, J.R. “Solving the 
Ivancevic Pricing Model Using the He's 
Frequency Amplitude Formulation” European 
Journal of Pure and Applied Mathematics, 10 
(4), 2017, 631-637. 

[15] Abdou, M.A.; and Soliman, A.A., Variational 
iteration method for solving Burger’s and 
coupled Burger’s equations. Journal of 
Computational and Applied Mathematics 181 
(2), 2005, 245-251. 

[16] Edeki, S.O. Akinlabi, G. O. and Onyenike, K., 
Local Fractional Operator for the Solution of 
Quadratic Riccati Differential Equation with 
Constant Coefficients, Proceedings of the 
International Multi Conference of Engineers 
and Computer Scientists,  Vol II, IMECS 2017, 
2017. 

WSEAS TRANSACTIONS on MATHEMATICS S. O.  Edeki, G. O. Akinlabi, I. D. Ezekiel

E-ISSN: 2224-2880 235 Volume 17, 2018



 

 

[17] Esipov, S. E., Coupled Burgers’ equations: a 
model of poly dispersive sedimentation, Phys 
Rev E.  52, 3711, 1995. 

[18] Mokhtari, R.; Toodar, A. S.; and Chegini, N. 
G. Application of the generalized differential 
quadrature method in solving Burgers’ 
equations, Commun. Theor. Phys. 56 (6), 1009, 
2011. 

[19] Rashid, A.; and Ismail, A. I. B., A fourier 
Pseudo spectral method for solving coupled 
viscous Burgers’ equations, Comput Methods 
Appl. Math. 9 (4), 2009, 4-12. 

[20] Kaya, D. An explicit solution of coupled 
viscous Burgers’ equations by the 
decomposition method, JJMMS, 27 (11), 675, 
2001. 

[21] Edeki, S.O., and Akinlabi, G.O. Zhou Method 
for the Solutions of System of Proportional 
Delay Differential Equations, MATEC Web of 
Conferences 125, 02001, 2017. 

[22] Mukherjee, S.; and Roy, B., Solution of Riccati 
equation with variable coefficient by 
differential transform method. International 
journal of nonlinear science, 14 (2), 2012, 251-
256. 

[23] Edeki, S.O.; Akinlabi, G.O.; and Adeosun, 
S.A., Analytic and Numerical Solutions of 
Time-Fractional Linear Schrödinger Equation. 
Communications in Mathematics and 
Applications, 7 (1), 2016, 1–10. 

[24] Oghonyon, J. G.  Omoregbe, N. A. , Bishop, 
S.A., Implementing an order six implicit block 
multistep method for third order ODEs using 
variable step size approach, Global Journal of 
Pure and Applied Mathematics, 12 (2), 2016, 
1635-1646. 

[25] Srivastava, V.K.; Tarmsir, M.; Awasthi, M.K.; 
and Singh, S. One-dimensional coupled 
Burgers’ equation and its numerical solution by 
an implicit logarithmic finite-difference 
method, AIP Advances 4, 037119, 2014, doi: 
10.1063/1.4869637. 

[26] Akinlabi, G.O. and Edeki, S.O., Solving Linear 
Schrodinger Equation through Perturbation 
Iteration Transform Method, Proceedings of 
the World Congress on Engineering, London, 
UK, 2017. 

[27] Oghonyon, J. G., Okunuga, S. A., Bishop. S. 
A., A 5-step block predictor and 4-step 
corrector methods for solving general second 
order ordinary differential equations, Global 
Journal of Pure and Applied Mathematics, 11 
(5), 2015, 3847-386. 

[28] Momani, S., Non-perturbative analytical 
solutions of the space- and time-fractional 

Burgers equations, Chaos, Solitons and 
Fractals, 28 (4), 2006, 930-937. 

[29] Sugimoto, N., Burgers equation with a 
fractional derivative; Hereditary effects on 
non-linear acoustic waves, J. Fluid Mech , 
225, 1991, 631–53. 

[30] Jumarie G. Modified Riemann-Liouville 
Derivative and Fractional Taylor series of 
Non-differentiable Functions Further 
Results, Computers and Mathematics with 
Applications, 51, (9-10), 2006, 1367-1376. 

[31] Jumarie, G. Cauchys integral formula via the 
modified Riemann- Liouville derivative for 
analitic functions of fractional order, Appl. 
Math. Lett., 23, 2010, 1444-1450. 

[32] Zhou, J.K. Differential Transformation and 
its Applications for Electrical Circuits. 
Huarjung University Press, China, 1986. 

[33] Edeki, S.O.; Akinlabi, G.O.; and Adeosun, 
S.A. On a modified transformation method 
for exact and approximate solutions of linear 
Schrödinger equations, AIP Conference 
Proceedings 1705, 020048, 2016; doi: 
10.1063/1.4940296.  

[34] Edeki, S.O.; Ugbebor, O.O. and Owoloko, 
E.A. Analytical Solutions of the Black–
Scholes Pricing Model for European Option 
Valuation via a Projected Differential 
Transformation Method. Entropy, 17 (11), 
2015, 7510-7521.   

[35] Akinlabi, G.O. and Edeki, S. O., On 
Approximate and Closed-form Solution 
Method for Initial-value Wave-like Models, 
International Journal of Pure and Applied 
Mathematics, 107 (2), 2016, 449-456. 

[36] Al-Mazmumy, M. and H. Al-Malki, The 
Modified Adomian Decomposition Method 
for Solving Nonlinear Coupled Burger’s 
Equations, Nonlinear Analysis and 
Differential Equations, 3 (3), 2015, 111-122. 

[37] Wazwaz, A.M., and El-Sayed, S. M., A new 
modification of the Adomian decomposition 
method for linear and nonlinear operator, 
Applied Mathematics and computation, 122 
2001, 393-405. 

WSEAS TRANSACTIONS on MATHEMATICS S. O.  Edeki, G. O. Akinlabi, I. D. Ezekiel

E-ISSN: 2224-2880 236 Volume 17, 2018




